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ABSTRACT
Latent variable models have long been utilized by behavioral scientists

to summarize constructs that are represented by multiple variables or are
difficult to measure, such as health practices and psychiatric syndromes.
They are regarded as particularly useful when measurable variables are
highly imperfect surrogates for the construct of inferential interest; among
numerous criticisms, they are criticized as being overly abstract and
computationally intensive. We propose a new strategy for developing latent
measurement model-based "indices" for subsequent use in regression
modeling.  Unlike most existing strategies, it yields approximately unbiased
estimators for regression parameters vis a vis full latent variable regression.
Small sample performance properties are evaluated. The methods are
illustrated using data on vision and adverse functioning in older adults. It
is hoped that, by counter-balancing strengths and weaknesses of latent
variable modeling, the findings will improve the utility of latent variable-

based approaches for scientific investigations. 



Introduction: Statistical Problem

! Observed variables (i=1,...,n):  Yi=M-variate;  xi=P-variate 

! Focus:   response (Y) distribution = GY|x(y|x);  x-dependence

! Modeling issue: flexible or theory-based? 
— Option 1 - Flexible: gm(E[Yim|xi])= fm(xi), m=1,...,M

— Option 2 - Theory-based: 
> Yi generated from latent (underlying) Ui: 

FY|U,x(y|U=u,x;B) (Measurement)

> Focus on distribution, regression re Ui:
FU|x(u|x;$) (Structural)

> Overall, hierarchical, model:
FY|x(y|x) = IFY|U,x(y|U=u,x)dFU|x(u|x)



The particular latent variable model at issue for this work:
Latent Class Regression (LCR) Model

! Model:
fY|x(y|x) = Pj(x,$) Bmj

ym(1-Bmj)
1-ym

! Structural model assumption : [Ui|xi] = Pr{Ui=j|xi} = Pj(xi,$)
— Generalized logit link:  RPRj=Pr{Ui = j|xi}/Pr{Ui = J|xi}; j=1,...,J

! Measurement assumptions : [Yi|Ui]
— conditional independence
— nondifferential measurement
  > reporting heterogeneity unrelated to measured, unmeasured
     characteristics

! Fitting:  ML w EM; robust variance

! Posterior latent outcome info:  Pr{Ui=j|Yi,xi;2=(B,$)}





 Latent Variable Scaling
A Three-Stage Approach

While behavioral health researchers favor latent variable modeling,
they frequently aim to develop an index and then use it as an observed
variable in subsequent regressions rather than fit a “full-blown” latent
regression in a single step.  That is:  

! Step 1: Fit full latent variable measurement model Y 
— For now: Non-differential measurement 

! Step 2: Obtain predictions Oi given , Yi

! Step 3: Obtain via regression of Oi on xi 

! Step 4 (rare): Fix inferences to account for uncertainty in  



Latent Variable Scaling (obtaining Oi)
What do we know?

! Predominant work: Latent Factor models 

— U ~ Normal; [Y|U] ~ BU + ,, , ~ N(0,E)

—  Three scaling methods

> Ad hoc

> Posterior mean:  Oi as E[Ui|Oi, ]

> “Bartlett” method: Weighted least squares, Ui “fixed”

Yi = Ui + ,i,  ,i ~ N(0, ); Oi as WLS model fit for Ui

— In Step 3, Bartlett scores yield consistent ; others don’t



Latent Variable Scaling (obtaining Oi)
What do we know?

! Latent Class models
—  Two scaling methods

> Posterior class assignment
• Modal or as “pseudo-class”: single or multiple
 

> Posterior probability estimates: 

hi = fU|Y(u|Y; ); Oi=hi (logit link) or logit(hi) or weighted

— In Step 3, all are biased for 

— A correction:  Croon, Lat Var & Lat Struct Mod, 2002 
Bolck et al., Political Analysis, 2004



Latent Variable Scaling (obtaining Oi)
A new proposal

! Motivation:  Bartlett method
—  [Y|U] ~ product Bernoulli, p = BS(U)

> Y, p: Mx1 vectors (outcomes)

> B: MxJ matrix of conditional probabilities (design matrix)

> S(U): Jx1 vector with jth element = 1{U=j}   (“coeffs”)

— Proposed Step 2: GLM of Yi on  with linear link,
Bernoulli family; Oi = 

— ML for GLM can be written as IRWLS
— A shortcut:  Oi =  via ordinary least squares; COP score



COP Scoring
Theory

! Proposed Step 3: GLM of O on x with gen. logit link,
Normal family

! Punch line: In Step 3, COP scores yield consistent .

! Basic ideas of proof
— If B were known: OLS yields unbiased estimator of 

> = , all i, Y 

 —  (marginalization, ML); then, uniform integrability 



Simulation Study

! Basic template: 2 classes; B = 

—2 measurement scenarios: “Precise”–J=0.10; “Imprecise”–J=0.30

! M=4, 8

! n=500, 1000

! 1 covariate; $0 = 0 ; $1 = 0.5

! Lots of secondary simulations to compare COP scores, full LV



 Simulation Study
 Results

Method Precise, 
m=4, n=500

Imprecise,
m=4, n=1000

Imprecise,
m=8, n=1000

E SErat Cov E SErat Cov E SErat Cov

Modal class 0.48 1.00 0.95 0.30 0.96 0.68 0.37 1.03 0.83

Pseudo-class 0.47 0.98 0.95 0.24 0.97 0.50 0.33 1.03 0.76

Posterior-GLM 1.66 0.98 0.59 0.33 0.96 0.71 0.62 0.98 0.92

Croon corrected 0.51 NA NA 0.49 NA NA 0.47 NA NA

COP score 0.51 0.97 0.95 0.51 0.98 0.96 0.49 1.00 0.94

LCR 0.51 0.99 0.95 0.52 0.98 0.96 0.49 1.02 0.95

! n=500 vs 1000, m=8: negligible difference

! Power = slightly highest for LCR; others = ~ comparable except pseudo
— Relative efficiency re LCR: $ 0.89



Simulation Study
COP Score Performance in Secondary Runs

! Findings similar in many cases:
— 3 classes
— $0�0, different $1 
— different measurement models
— continuous versus binary x

! Multiple (4) covariates

— Accuracy of mean model estimation maintained

— Accuracy of standard errors compromised

> For moderate |$1|: coverages ~ within 0.02 of 0.95

> With large |$1|: coverages as low as 0.83



Application
IADL Functioning in the Salisbury Eye Evaluation (SEE) Study 

!  Study:  Salisbury Eye Evaluation (SEE; West et al. 1997)
— Representative of community-dwelling elders
— n=2520; 1/4 African American
— This talk:  A convenience sample of n=1329

!  Question of interest: Is worse vision associated with worse 
IADL functioning independently of age (and sex)?

— IADL (Y): Indicators of difficulty shopping, preparing 
meals, doing light housework, and using the phone 

— Vision (primary X): Visual acuity (logMAR)



Application
Findings

! Two class model (questionable fit–apparent differential
measurement by sex!)

Coefficient Model 1 Model 2

LCR COP LCR COP

Intercept -3.17
(-3.61,-2.73)

-3.12
(-3.51,-2.73)

-2.91
(-3.44,-2.34)

-3.02
(-3.47,-2.57)

Vision  2.05
( 1.33, 2.76)

 2.15
( 1.72, 2.59)

 2.00
( 1.21, 2.78)

2.11
( 1.68, 2.55)

Age (yr)  0.75
( 0.21, 1.29)

 0.72
( 0.28, 1.17)

 0.72
( 0.17, 1.26)

 0.71
( 0.27, 0.15)

Sex NA NA -0.68
(-1.34,-0.03)

-0.17
(-0.63, 0.28)

— Re green estimates: many other methods closer to LCR



Discussion
!  Finding:  Proposal of a novel latent class “index” 

— applicable in multi-stage analysis (index 1st then regression)
— yields consistent regression coefficient estimators (theory)
— achieves accurate small sample performance (simulation)

! Gaps 
— Inference to account for uncertainty due to first stage
— Estimation target, correction if differential measurement

! Contribution
— First such index for latent class analysis
— More easily implemented that Croon correction
— More accurate/precise and clearly interpretable inferences

than commonly practiced alternatives


